
Digital Electronics

By Sonika P. Biswal

Number System
• Number System that tells us how can we store or represent numbers in a digital system.

System Base Symbols Used By
Humans?

Used By
Computers?

Decimal 10 0,1,…………9 Yes No

Binary 2 0,1 No Yes

Octal 8 0,1,…………7 No No

Hexa-
decimal

16 0,1,…………9
A,B,…………F

No No

• A digital system can understand positional number system only where few symbols are called digits

and these symbols represent different values depending on the position they occupy in the number.

A value of each digit in a number can be determined using

• Position of the digit in the number

• Base of the number system

(where base is defined as the total number of digits available in the number system).

Relation between Binary, Octal and Hexagonal Number System

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

Octal

0

1

2

3

4

5

6

7

Hexa-
Decimal

0

1

2

3

4

5

6

7

Decimal Binary

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Octal

10

11

12

13

14

15

16

17

Hexa-
Decimal

8

9

A

B

C

D

E

F

Decimal Binary

16 10000

17 10001

18 10010

19 10011

20 10100

21 10101

22 10110

23 10111

e.g. Represent 18 in binary and Octal.

2 2
(18)10 → (10010)2 → 010 010 → (22)8

e.g. Represent 18 in binary and Hexadecimal.

1 2

(18)10 → (10010)2 →0001 0010→ (12)16

Relation between Binary, Octal and Hexagonal Number System

Decimal Binary Octal Hexa-
Decimal

Decimal Binary Octal Hexa-
Decimal

Decimal Binary Octal Hexa-
Decimal

0 0 0 0 8 1000 10 8 16 10000 20 10

1 1 1 1 9 1001 11 9 17 10001 21 11

2 10 2 2 10 1010 12 A 18 10010 22 12

3 11 3 3 11 1011 13 B 19 10011 23 13

4 100 4 4 12 1100 14 C 20 10100 24 14

5 101 5 5 13 1101 15 D 21 10101 25 15

6 110 6 6 14 1110 16 E 22 10110 26 16

7 111 7 7 15 1111 17 F 23 10111 27 17

Binary/Octal/ Hexadecimal to Decimal Conversion

Decimal

Binary Octal Hexa-
decimal

Binary/Octal/ Hexadecimal to Decimal Conversion

• Multiply each bit by b𝑛, where n is the weight of the bit and b represents the base w.r.t binary.
b = 2 (for Binary) = 8 (for Octal) = 16 (for Hexagonal)

• The weight of the position of the digit starting from 0 on the right.

• Add all results.

• e.g. (101011)2= 1 × 20 = 1

1 × 21 = 2

0 × 22 = 0

1 × 23 = 8

0 × 24 = 0

1 × 25 = 32

= (43)10

(724)8= 4 × 80 = 4
2 × 81 = 16

7 × 82 = 448

= (468)10

(𝐴𝐵𝐶)16=12 × 160 = 12
11 × 161 = 176

10 × 162 = 2560

= (2748)10

Binary to decimal Octal to decimal hexadecimal to decimal

Octal to Binary
• Represent the octal number in 3-

bit equivalent binary.
Or

Octal → Decimal → Binary

Example: 7 1 2

111 001 010

(712)8= (011100010010)2

712 8

= 2 × 80 + 1 × 81 + 7 × 82

= 458 10

(458)10= 2 458
2 229 0
2 114 1
2 57 0
2 28 1
2 14 0
2 7 0
2 3 1
2 1 1

1
Ans = (111001010)2

Binary to Octal
• Represent the binary number in

3-bit equivalent binary.
• Arrange the number from right to

Left.

2 2
(10010)2 → 010 010 → (22)8

Example:

(1011010111)2= (?)8

111010001 011

1 3 2 7

= (1327)8

Hexadecimal to Binary

• Represent the Hexadecimal number in
4-bit equivalent binary.

Or
Hexadecimal → Decimal → Binary

Example: 7 1 2

0111 0001 0010

1 0 A F

0001 0000 1010 1111

(712)16= (011100010010)2

(10𝐴𝐹)
16

= (0001000010101111)2

Binary to Hexadecimal

• Represent the binary number in
4-bit equivalent binary.

• Arrange the number from right to
Left.

Example: (1011010111)2= (?)16

011111010010

2 D 7

= (2D7)16

Octal to Hexadecimal

• Convert Octal to Binary
• Represent Binary in hexadecimal

Octal→ Binary → Hexadecimal

1 0 7 6

001 000 111 110

0010 0011 1110
2 3 E

(1076)8= (23𝐹)16

Hexadecimal to Octal

• Convert Hexadecimal to Binary
• Represent Binary in Octal
Hexadecimal → Binary → Octal

Example: (1076)8= (?)16

1 F 0 C

0001 1111 0000 1100

001 111 100 001 100
1 7 4 1 4

(1F0C)16= (17414)8

Example: (1F0C)16= (?)8

Decimal to Binary/Octal/ Hexadecimal

Decimal

Binary
Octal

Hexa-
decimal

Decimal to Binary

• Divide the decimal number by 2
and keep track of the remainder.

(125)10= (?)2

= 2 125
2 62 1
2 31 0
2 15 1
2 7 1
2 3 1
2 1 1

0 1
Ans :
(125)10= (01111101)2

Decimal to Octal

• Divide the decimal number by 8
and keep track of the remainder.

(1234)10= (?)8

= 8 1234
8 154 2
8 19 2
8 2 3

0 2

Ans :
(1234)10= (2322)8

Decimal to Hexagonal

• Divide the decimal number by 16
and keep track of the remainder.

(1234)10= (?)16

= 16 1234
16 77 2
16 4 13 = D

2 4

Ans : (1234)10= (4𝐷2)16

2) Compliment Form

1. 1’s Compliment

2. 2’s Compliment

Representation of Signed Numbers

Example-1:
1’S Compliment of 10 : 1010 (In Binary)

0101 (Compliment)
Ans = 0101

→ Complimenting/ Reversing each and every
bit of a binary number.

→ Adding 1 to the 1’s compliment number.

1) Signed Magnitude form
0 = Positive (+)
1 = Negative (-)
Syntax: sign bits Actual binary

number
e.g. +7 → 0111

-7 → 1111

Example-2:
1’S Compliment of 125 : 01111101 (In Binary)

10000010 (Compliment)
Ans = 0101

Example-3:
2’S Compliment of 10: 1010 (In Binary)

0101 (1’s Compliment)
+ 1

0110 (2’s Compliment)

Contd..

1’S Compliment of -12 : 1100 (12 In Binary)

0011 (1’s compliment of 12)
10011 (1’s compliment of -12)

Ans = 10011: Here, 1 represents the signed bit

Example-4: Represent -12 in 1’s compliment and 2’s compliment form.

2’S Compliment of -12 : 0011 (1’s Compliment of 12)
+ 1
0100 (2’s Compliment of 12)

10100 (2’s Compliment of -12)

Ans = 10100: Here, 1 represents the Sign bit)

Sign
bit

1’s Compliment of
Actual Binary

Syntax :

Sign
bit

2’s Compliment of
Actual Binary

Syntax :

Binary Arithmetic
Binary Addition : It is a key for binary subtraction, multiplication, division.

Case A + B Sum Carry

1 0 + 0 0 0

2 0 + 1 1 0

3 1 + 0 1 0

4 1 + 1 0 1

Binary Subtraction:

Case A - B Sub Borrow

1 0 - 0 0 0

2 0 - 1 0 1

3 1 - 0 1 0

4 1 - 1 0 0

Binary Multiplication:

Case A - B Multiplication

1 0 × 0 0

2 0 × 1 0

3 1 × 0 0

4 1 × 1 1

Example: 0011010 = 2610

× 0001100 = 1210

0000000
0000000

0011010
0011010
0100100000 = 31210

Binary Division:

Example: 101010/000110 = ?

Binary Code

• When numbers, letters or words are represented by a particular group of

symbols, it is said that the number, letter or word is being encoded.

• The group of symbols is called as a code.

• The digital data is represented, stored and transmitted as group of binary bits.

This group is also called as binary code.

• The binary code is represented by the number as well as alphanumeric letter.

Advantages:

• Binary codes are suitable for the computer applications.

• Binary codes are suitable for the digital communications.

• Binary codes make the analysis and designing of digital

circuits if we use the binary codes.

• Since only 0 & 1 are being used, implementation becomes

easy.

Classification of binary codes:

The codes are broadly categorized into following

categories.

1. Weighted Codes

2. Non-Weighted Codes

3. Binary Coded Decimal Code

4. Alphanumeric Codes

5. Error Detecting Codes

6. Error Correcting Codes

Weighted Codes
Classified into Two types,

1) Positive Weighted Code e.g. 8421, 2421, 3321, 4221

2) Negative Weighted Code e.g. 84 ത2 ത1 ,74 ത2 ത1

Decimal 8421

0 0000 all bit ‘0’ ,as no bits are
contributing.

Representation of 8421:
• Add each bits in 8421 such a manner that the

result must give decimal number.

• The contributing bit will be assigned as 1
and rest are 0.

7 0111 Three bits are ‘1’ , three bits
(4,2,1) are contributing to
result 7. i.e. 4+2+1=7

10 1010 Two bits are ‘1’ , as two bits
(8 & 2) are contributing to
result 10. i.e. 8+2=10

15 1111 All bits are ‘1’ ,as all bits
(8,4,2,1) are contributing to
result 7. i.e. 8+4+2+1=15

• Similar process for 2421, 3321, 4221, 84ഥ𝟐 ഥ𝟏 ,74 ഥ𝟐 ഥ𝟏
(here ഥ𝟐 , ഥ𝟏 means -2 , -1)

Decimal 2421

0 0000

7 0111

9 1111

Decimal 84ഥ𝟐 ഥ𝟏

0 0000

1 0111

9 1011

4-2-1 = 1, as 4,2, & 1 are responsible to
result 1. So the bits in place of 4, 2’, 1’ are 1

8+4-2-1 =9, so the bits in place of 8 4
2’ 1’ are 1

Non-weighed Codes
Classified into two types,

1) Excess-3 Code
2) Gray Code Keep the MSB constant, take exclusive addition (⊕) among other bits or Use Shifting method.

Convert the decimal to 8421 binary and then add 011. or add 3 to decimal then convert to Binary.

Decimal 8421 Excess-3

0 0000 0000 (8421 BCD) 0
+ 011 +3

0011 0011

4 0100 0100 (8421 BCD) 4
+ 011 +3

0111 7 (0111)

9 1001 1100

Decimal 8421

6 0101

Gray

0 1 0 1

0 1 1 1

9 1001 1101

Shifting method
1 0 0 1 Delete

this
⊕ 1 0 0 1
1 1 0 1 Ans

Exclusive addition (⊕)

0 0 1 1
⊕ 0 1 0 1

0 1 1 0

ASCII Code

• ASCII Stands for American Standard for information interchange.

• An alphanumeric code used for data communication/ information interchange
in digital computers.

• It consists of numbers, alphabets and special characters.

• The ASCII is a 7-bit code. It can result 128 number of possible characters.

• Out of 128 numbers, 34 are printable and 94 are printable.

• Extended ASCII, 8-bit code → can provide 256 number of characters.

Binary to ASCII

• Arrange the binary number to set of 7-bit.
• Convert Binary to equivalent decimal.
• Convert the decimal to ASCII (as per the table).

Example 1001001 1000001 1001101

64 32 16 8 4 2 1 64 32 16 8 4 2 1 64 32 16 8 4 2 1

73 65 77

I A M = Ans

77 = 1 × 1 + 0 × 2 + 1 × 4 + 1 × 8 + 0 × 16 + 0 × 32 + 1 × 64

65 = 1 × 1 + 0 × 2 + 0 × 4 + 0 × 8 + 0 × 16 + 0 × 32 + 1 × 64

73 = 1 × 1 + 0 × 2 + 0 × 4 + 1 × 8 + 0 × 16 + 0 × 32 + 1 × 64

Error Detection and Correction Code
• Error detection and correction code plays an important role in the transmission of data

from one source to another.

• The noise also gets added into the data when it transmits from one system to another,
which causes errors in the received binary data at other systems.

• The bits of the data may change(either 0 to 1 or 1 to 0) during transmission. It is
impossible to avoid the interference of noise, but it is possible to get back the original
data with the help of error correction code.

• The error detection codes are the code used for detecting the error in the received data
bitstream. In these codes, some bits are included appended to the original bitstream.

Error Correction Codes can be broadly categorized into two types −
•Block codes − The message is divided into fixed-sized blocks of bits, to which redundant
bits are added for error detection or correction.
•Convolutional codes − The message comprises of data streams of arbitrary length and
parity symbols are generated by the sliding application of a Boolean function to the data
stream

Hamming Code

Satisfying criteria to determine the position of parity
bits 2P ≥ P + M+ 1
M = no. of message bits
P = Parity bits

• Hamming code is a block code (Error Correction Code) that can detect up to two simultaneous
bit errors and correcting single-bit errors.

• Here the source encodes the message by inserting Parity bits (redundant bits) within the
message. (for security purpose)

• These Parity bits are extra bits that are generated and inserted at specific positions in the
message itself to enable error detection and correction.

• When the receiver receives this message, it performs recalculations to detect errors and find the
bit position that has error.

• The Parity bit can be Even or Odd.

Procedure to encode a message by Hamming Code

•Step 1 − Calculation of the number of parity bits.

•Step 2 − Positioning of the parity bits.

•Step 3 − Calculating the values of each parity bit.

Example: M1 M2 M3 M4 (Transmitted Bits)

P1 M1 P2 M2 P3 M3 P4 M4

(Hamming Code)

P1, P2 , P3 , P4 are the Parity Bits.

Example : Generate Hamming Code (HC) for the message 1110 in both Even and Odd Parity.

2P ≥ P + M+ 1
≥ P + 5

P = 3 → 8 ≥ 8 (satisfying the criteria)

i.e. To transmit 4 message bits we
need at least 3 parity bits.

1 2 3 4 5 6 7 8

20 21 22 23

1 1 1 0P1 P2 P3

M1 M2 M3 M4P1 P2 P3

P1= 1,3,5,7,9,11…… → P1 1 1 0 → 0 1 1 0

P2= 2,3,6,7,10,11….. → P2 1 1 0 → 0 1 1 0

P3= 4,5,6,7,12 to 15, 20 to 23….. → P3 1 1 0 → 0 1 1 0

0 0 1 0 1 1 0 HC with Even Parity

1 1 0 1 0 0 1 HC with Odd Parity (take compliment of HC with Even Parity)

Position for Even Parity bit (Even)

Position of the

coded message

Position of the

Parity Bits

i.e. To transmit 4 message bits we
need at least 3 parity bits.

Completed

